Benchmark RI-MP2 database of nucleic acid base trimers: performance of different density functional models for prediction of structures and binding energies.

نویسندگان

  • Martin Kabelác
  • Haydee Valdes
  • Edward C Sherer
  • Christopher J Cramer
  • Pavel Hobza
چکیده

A new database of nucleic acid base trimers has been developed that includes 141 geometries and stabilization energies obtained at the RI-MP2 level of theory with the TZVPP basis set. Compared to previously compiled biologically oriented databases, this new construct includes considerably more complicated structures; the various intermolecular interactions in the trimers are quite heterogeneous and in particular include simultaneous hydrogen bonding and stacking interactions, which is similar to the situation in actual biopolymers. Validation against these benchmark data is therefore a more demanding task for approximate models, since correct descriptions of all energy terms are unlikely to be accomplished by fortuitous cancellations of systematic errors. The density functionals TPSS (both with and without an empirical dispersion term), PWB6K, M05-2X, and BH&H, and the self-consistent charge density functional tight binding method augmented with an empirical dispersion term (SCC-DFTB-D) were assessed for their abilities accurately to compute structures and energies. The best reproduction of the BSSE corrected RI-MP2 stabilization energies was achieved by the TPSS functional (TZVPP basis set) combined with empirical dispersion; removal of the dispersion correction leads to significantly degraded performance. The M05-2X and PWB6K functionals performed very well in reproducing the RI-MP2 geometries, but showed a systematic moderate underestimation of the magnitude of base stacking interactions. The SCC-DFTB-D method predicts geometries in fair agreement with RI-MP2; given its computational efficiency it represents a good option for initial scanning of analogous biopolymeric potential energy surfaces. BH&H gives geometries of comparable quality to the other functionals but significantly overestimates interaction energies other than stacking.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cooperativity in noncovalent interactions of biologically relevant molecules.

Using a recently published benchmark MP2 database of nucleic acid base trimers, the three-body contribution to the interaction energy (TBE, also termed (non)cooperativity) as a function of base composition and complex geometry is studied. In 28 out of 141 cases (or 20%), the counterpoise-corrected MP2/TZV(2df,2pd) TBE exceeds 1 kcal mol(-1). The TBE is below 1 kcal mol(-1) for all trimers in th...

متن کامل

Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study

The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...

متن کامل

Accurate interaction energies of hydrogen-bonded nucleic acid base pairs.

Hydrogen-bonded nucleic acids base pairs substantially contribute to the structure and stability of nucleic acids. The study presents reference ab initio structures and interaction energies of selected base pairs with binding energies ranging from -5 to -47 kcal/mol. The molecular structures are obtained using the RI-MP2 (resolution of identity MP2) method with extended cc-pVTZ basis set of ato...

متن کامل

Computational studies of planar, tubular and conical forms of silicon nanostructures

Density functional theory (DFT) calculations were performed to investigate the properties of planar, tubular and conical forms of silicon nanostructures. The evaluated parameters including averaged bond lengths, binding energies, gap energies and dipole moments were then evaluated for the optimized models of study. The results indicated that the bond lengths between silicon atoms are different ...

متن کامل

Computational studies of planar, tubular and conical forms of silicon nanostructures

Density functional theory (DFT) calculations were performed to investigate the properties of planar, tubular and conical forms of silicon nanostructures. The evaluated parameters including averaged bond lengths, binding energies, gap energies and dipole moments were then evaluated for the optimized models of study. The results indicated that the bond lengths between silicon atoms are different ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 9 36  شماره 

صفحات  -

تاریخ انتشار 2007